A Reduction Algorithm for Large-Base Primitive Permutation Groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Minimal Base Size of Primitive Solvable Permutation Groups

A base of a permutation group G is a sequence B of points from the permutation domain such that only the identity of G fixes B pointwise. Answering a question of Pyber, we prove that all primitive solvable permutation groups have a base of size at most four.

متن کامل

Distinguishing Primitive Permutation Groups

Let G be a permutation group acting on a set V . A partition π of V is distinguishing if the only element of G that fixes each cell of π is the identity. The distinguishing number of G is the minimum number of cells in a distinguishing partition. We prove that if G is a primitive permutation group and |V | ≥ 336, its distinguishing number is two.

متن کامل

Bases for Primitive Permutation Groups and a Conjecture of Babai

A base of a permutation group G is a sequence B of points from the permutation domain such that only the identity of G fixes B pointwise. We show that primitive permutation groups with no alternating composition factors of degree greater than d and no classical composition factors of rank greater than d have a base of size bounded above by a function of d. This confirms a conjecture of Babai. Q...

متن کامل

Suborbits in Infinite Primitive Permutation Groups

For every infinite cardinal κ, we construct a primitive permutation group which has a finite suborbit paired with a suborbit of size κ. This answers a question of Peter M. Neumann.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: LMS Journal of Computation and Mathematics

سال: 2006

ISSN: 1461-1570

DOI: 10.1112/s1461157000001236